Contents

P	roducts	.2
	Blood Products	2
	ABO System	3
	Rh System	3
	Transfusion Risks	5
Equipment7		
	Cell Saver	7
Procedures		
	Blood Conservation Techniques	7
	Surgery on Jehovah Witness	8
	Needlesticks & Bodily Fluid Exposure	ç

Products

Blood Products

RBC's

- plasma removed (HCT 50-70%)
- additives = citrate, phosphate, dextrose, adenine (CPDA) or SAGM
- volume 200-400mL
- stored at 2-6 deg
- Paeds dose = 4ml/kg
- shelf life 35 days
- needs to be ABO compatible; in emergency use Rh -ve in females
- Max 30 min out of fridge before can return to bb for re-use
- 4hrs to complete transfusion
- May start transfusion after 30min if stored ambiently
- avoid transfusing in line with Hartmans Ca in fluid will coagulate fluid

Platelets

- pooled (4 donors of whole blood -> centrifuged) or single donor (apheresis)
- kept at 20-26deg with continual agitation in special plastic packs
- shelf life ~5days
- 1 std unit \Rightarrow 1 count by 20-40
- paeds dose =
 - <15kg 10-20ml/kg</p>
 - \rightarrow >15kg = 1 unit
- ideally ABO compatible, not vital in a crisis
- complete transfusion in 1 hr or return to bb
- bb will only accept back if continually agitated while away from bb
- should use dedicated new giving set

FFP

- centrifugation of whole blood or apheresis
- sourced from males only
- rapidly frozen (within 8hrs post collection)
- UV light viral inactivation
- lasts 1 yr in storgage
- volume = 300mL
- 1 unit ↑all coag factors by ~2-3%
- Paeds dose = 10-20ml/kg
- use in 4hrs
- may return to bb or fridge within 30mins ⇒ kept for 24-48hrs before discarded

Cryoprecipitate

- from single donation apheresis, males only
- rapid thawing @ 4C
- stored at -25 deg
- shelf life 1yr
- rich in factor 2,5,7,9,10, fibringoen, vWB factor, fibronectin
- volume = 20-40mL
- 1 unit \Rightarrow †fibrinogen by 0.5g
- Adult dose = 1unit/30kg
- Paeds dose = 5ml/kg
- should be ABO compatible
- must initiate transfusion within 30mins & complete within 4hrs
- if within 30min then return to bb for safe storage at room temp until it is discarded at 4hrs
- if >30min and not started then should be discarded

- alternative dried concentrated fibringen avoids delay in waiting for thawing (common in Europe)

Plasma derivatives

- albumin
- immunoglobulins
- clotting factors
- concentrates

Other products

- artificial O2 carriers (haemoglobin solutions and perfluorocarbons) -> on trial medications
- fVIIa -> see Massive Transfusion Algorithm
- Irritated products ⇒
 - ▶ ↓shelf life to 14days
 - use in immune deficient patients and neonates

ABO System

- Antigen on rbc cell
 - → also found in plasma, saliva, gastric juice, tears, bile (not CSF)
 - → unlike Rh which only on rbcs
- Antibodies in blood serum
- Transfusion of packed red cells = transfusion of cells **not** serum
- ABO system named after antigens on rbc cell
- Antigens in intestinal bacteria & food very similar to agglutinins
 - : soon develop antibodies to antigens not already in their own blood

Packed Red Cell Compatibility

- Varieties & frequency (Caucasian) of blood types named after antigens
 - o Recipient A = A antigen; anti B antibody (45%) give A or O
 - o Recipient B = B antigen; anti A antibody (10%) give B or O
 - o Recipient AB = A & B antigen; no antibody (4%) give anything
 - o Recipient O = have no antigens; anti A & B antibodies (43%) give O only
 - → thus O = universal donor; AB = universal recipient

FFP Compatibility

- Recipient O = give anything
- Recipient AB = give AB
- Recipient A = give A,AB
- Recipient B = B, AB
- ∴ universal donor = AB; universal recipient = O
 - → ie opposite to prc's

Rh System

- Named after rhesus monkey
- C, D, E antigens only on rbcs
- D is the most antigenic and most common ~85%
- Rh antibodies =
 - o Rarely occur naturally:
 - anti C & anti E

→ but no natural anti D exists

- Usually
 - Immune created,
 - Warm
 - IgG in origin ie can cross placenta (actively)
- Problem when Rh–ve mother exposed to fetal Rh +ve blood in 1st pregnancy:
 - Needs D antibody (antiD) <72hrs to mop up/destroy Rh D+ antigens which could have corssed placenta/entered maternal circulation
 - o this prevents formation of maternal antiD IgG which would cause haemolysis of next pregnancys Rh+fetus (erythroblastosis fetalis)

haemolysis death in utero, kernicterus, anaemia, jaundice, hyrdops fetails (oedema) bilirubin depositied in basal ganglia

- 85% whites = Rh +ve
- 99% Asians Rh +ve

Safety of Blood Transfusion & Degree of Compatibility testing

Extent tested: Relative safety:

•	ABO-compatible	99.4%
•	ABO + Rh compatible	99.8% (1:1000 react)
•	ABO + Rh + neg antibody screen aka group & screen	99.94% (1:10 000)
•	ABO + Rh + neg ab screen + Coombs' test ("full X-match")	99.95% (1:500 000)

• Coombs' test adds very little extra and is usually omitted in routine testing.

Transfusion Risks

1. Incorrect Blood Product Transfused

2. Storage Lesions

- ↓pH:
 - due to: lactic acid production from rbcs AND citrate
 - ▶ pH blood 6.9-7 @21days
 - but uncommon & usually only in massive transfusions
 - more common is slight met alkalosis: citrate metabolised to HCO3
- ↓2,3DPG:
 - L shift OHDC
 - usually not impt
- †K:
 - blood @21days = 30mmol/L
 - usually not an issue
 - give Ca if needed
- ↓Ca:
 - citrate toxicity
 - ▶ not problem unless >1unit/5min
 - risk factors:
 - liver dysfunction
 - hypothermia
 - hyperventilation
- ↓Mg

3. TRALI

- 2 theories of cause:
 - ▶ donor anti-granulcytic antibodies in plasma react with recipient WBC antigens ⇒ immune reaction
 - biologically activated mediators and lung mediate reaction
- acute respiratory distress within 6 hours of transfusion
- supportive care and inform blood bank
- incidence = 1:5,000 U of plasma containing products (FFP, platelets or whole blood)

Diagnosis:

- acute onset ALI (with in 6 hours of a transfusion)
- hypoxia (PaO2/FiO2 = 300mmHg regardless of PEEP or SpO2 <90% of RA)
- bilateral pulmonary infiltrates
- not cardiogenic in origin
- PAWP < 18mmHg

Pathophysiology:

- complement activation -> pulmonary sequestration -> neutrophil activation -> endothelial cell damage + capillary leak syndrome

Management:

- stop transfusion
- supportive
- respiratory support (most require intubation)
- lung protective ventilation
- haemodynamic support
- ? high dose steroids
- inform blood bank and haematology

Prognosis:

- most recover within 48-86 hours

- radiological changes last 7 days
- mortality 10%

Prevention

- leucodepletion & use of male only donors of blood products now means TRALi v rare
- limit transfusion of blood products
- preoperative optimization of blood volume (dietary supplements, Fe2+, EPO)
- prevent hypothermia
- use anti-fibrinolytics
- cell salvage
- avoid donations from multiparous women

4. Acute Transfusion Reactions

- allergic:
 - incomptatible plasma proteins
 - mild (rash, pruritis, fever):
 - = common
 - slow infusion
 - ▶ mod:
 - stop, give antihistamines
 - severe:
 - anaphylaxis
 - IgA to IgA deficient patient who has anti-IgA antibodies
- febrile
 - non haemolytic type
 - occurs <4hrs</p>
 - cause =
 - recipient antibodies against donor WBCs
 - cytokines in donor product
 - Rx:
 - slow
 - give tramadol for shivering
 - stop
- haemolytic ABO incompatible

5. Delayed Haemolytic Transfusion Reactions

- antibodies against minor donor rbc antigens
- 10-14days post
- signs: ↓Hb, ↑bili, ↑LDH, agitation, fever, rash, shock
- Supportive care
- Notify bb

6. Transfusion-transmitted infections

- HIV 1% risk at needlestick (but no known ANZ transmissions)
- hepatitis A
- Hepatitis B 30% risk at needlestick
- Hepatitis C 3% risk at needlestick
- syphilis
- CMV leucodeplete
- malaria
- CJD (leucocyte depleted to decreased risk of CJD transmission)
- bacterial

7. Transfusion Associated Cardiac Overload

Equipment

Cell Saver

- = collection of a patients blood loss, anticoagulation, filtration -> reinfusion into patient
- Indications
 - ▶ ≥1litre blood loss expected incl trauma
 - High risk surgery
 - unusual blood type/antibodies
 - JW
- two types of devices available (haemofiltration and washing of RBCs)

Advantages

- homologous blood transfusion
- decreased risk of disease transmission
- blood warmer than stored blood
- cost effective after a period of time as less resource required in preparation and storage of donor blood
- washing RBC's technique -> removal of platelets and clotting factors
- whole blood transfusion rather than component blood products (haemofiltration technique)
- may be acceptable to some Jehovah's Witness patients
- no need to cross match
- efficient
- decreased risk of storage lesion
- quick

Disadvantages

- all of blood loss not able to be reinfused
- expensive equipment initially
- requires trained personnel to manage salvage system (may not be always available)
- blood anti-coagulated -> increased risk of bleeding
- may not be set up and available for unexpected massive blood loss
- dilutional coagulopathy
- contraindications = Gi tract contamination, amniotic fluid contamination, malignancy
- haemolysis

Procedures

Blood Conservation Techniques

Preoperative Management

- optimise preoperative Hb if <130 : iron +/- EPO
 - investigated and treat cause of anaemia iron studies & haematinincs
 - stop anti-platelet and anti-coagulation
- Therapy:
 - oral iron/IV iron
 - EPO (max effect after 4 weeks)
 - autologous donation (see notes)

Intraoperative Management

SURGICAL

- less invasive surgery
- LA with vasoconstriction
- fibrin glue
- tourniquets

- ultrasonic scalpels
- laser

ANAESTHESIA

- avoid venous congestion (patient positioning, high intrathoracic pressure, hypercapnia)
- epidural + spinal -> reduces both venous and arterial pressures
- keep warm
- induced hypotension
- anti-fibrinolytics; transexamic acid
- rFVIIa
- increased platelet function; DDAVP
- acute normovolaemic haemodilution
- intraoperative cell salvage

Postoperative Management

- post-operative cell salvage
- Restrictive transfusion threshold

Surgery on Jehovah Witness

- should discuss with patient what they accept:

Unacceptable; whole blood, PRBC's, plasma, autologous pre-donation **Acceptable;** bypass, dialysis, acute hypervolaemic haemodilution, EPO, rVIIa **May be Acceptable;** platelets, clotting factors, albumin, immunoglobulins, epidural blood patch, cell salvage

Preoperative Management

- elective; talk and go through options and advance directives
- emergency:
 - seek patients wishes, but if unable to get OK to act in best interests,
- children (<16yrs) =
 - parents can't refuse on child's behalf
 - can involve courts if required
 - must try to establish wishes of child ?competent
- early communication essential
- assess what is and is not acceptable to patient
- involve relevant specialities (haematology, ICU)
- liaise with local JW liaison
- investigate and treat any anaemia:
 - Fe2+ (PO/IV)
 - ▶ EPO
- review anti-platelet and anticoagulants
- discuss whether surgery can be staged to decreased acute blood loss

Intraoperative Management

- meticulous surgical technique
- argon beam diathermy
- biological haemostasis (haemostat, kaltostat, fibrin glue, sealants)
- reduce venous congestion (patient positioning, avoid high intrathoracic pressures, hypercarbia)
- warm
- invasive monitoring
- regional if appropriate
- hypotensive anaesthesia
- drugs; tranexamic acid, DDAVP
- acute hypervolamic haemodilution (administer IVF to increase volume but don't remove blood)
- cell salvage (if acceptable)

- rVIIa

Postoperative Management

- ICU if required
- direct compression of oozing
- early re-exploration
- hyperbaric O2 may reverse severe hypoxaemia

Needlesticks & Bodily Fluid Exposure

Standard Universal precautions should be used with every patient as any one may carry infectious either knowingly or unknowingly.

- 1. Vaccination against Hepatitis B
- 2. Gloves double gloving provides extra protection
- 3. Blunt needles where practical
- 4. Sharps containers (accessible and changed frequently once full)
- 5. Those who use sharps should take responsibility for discarding them safely
- 6. Safety IV cannulae
- 7. Adequate cleaning and sterilisation of spilt blood products
- 8. Good communication when a patient is known to be high risk is coming to OT (experienced staff to perform invasive procedures)
- 9. Not reusing vials or needles between patients
- 10. Having adequate suction available to remove blood and other body fluid.
- 11. Strategy/Protocol for a potential contamination injury:
 - first aid:
 - encourage bleeding of area
 - apply alcohol gel to area
 - flush area with running water for 10 min
 - dressing area
 - follow up:
 - notifying hospital co-ordinator,
 - filling out incident form,
 - consent to sample patients blood for viral agents
 - if known high risk patient empirical treatment to healthcare worker
 - rapid Hep B booster
 - other immunisations
 - anti-retrovirals
 - taking of health care worker baseline blood
 - immediate processing with occupational health follow up,
 - strategies to prevent his happening again.