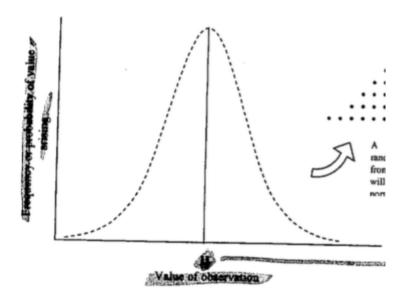
Contents


Basics	2
Types of Data	2
Normal Distribution	2
Indices of Central Tendency	3
Measures of Variability	3
Parametric Tests	4
Student's T test	4
Confidence Intervals	4
Analysis of Variance (ANOVA)	5
Non-Parametric Tests	5
Wilcoxon Rank Sum Test	5
Mann-Whitney U Test	5
Linear Regression & Correlation	6
Pearson Correlation Coefficient	6
Risk	6
Chi square vs Risk Analysis	6
Cohort Studies	6
Relative Risk (Risk Ratio)	6
Case Control Study	7
Odds Ratio	7
Number Needed to Treat	7
Predictive Ability of Tests	8
Sensitivity	8
Specificity	8
PPV	8
NPV	8
Power & Calculation of Sample Size	
Meta Analysis	9
Funnel Plots	10
Evidence Based Medicine	10
Errors in Research	
Random Error Bias	11 11
	12
Analysis Errors Presentation/Publication Error	12
How to Plan a Study	
Clinical Drug trials	
High Yield Definitions	14

Basics

Types of Data

- parametric = continuous, numerical data from normally distributed population
- non-parametric = other data which is not normally distrubuted e
 - ordinal data eg number give to subjective observations eg ASA, APGAR
 - nominal data eg variable described in terms of quality not quantity eg frequency of waveforms
 - interval data = like ordinal data but intervals between values is equal but doesnt start at zero eg temp in celcius (20deg is not twice as hot as 10deg)
 - ratio = interval data with a natural zero point eq temp in kelvin or absolute pressure
 - ▶ binary data = 2 alternatives eg dead or alive
 - ▶ discrete = data isolated & separated by gaps eg number of episodes of vomiting
 - continuous = data part of continuous range of values eg height
- reporting data
 - ▶ parametric ⇒ mean & standard deviation
 - interval & ratio ⇒ debate whether mean appropriate
 - ▶ ordinal ⇒ median, range
 - \rightarrow nominal \Rightarrow mode

Normal Distribution

Features

- observation within population has a norm
- random independent factors cause variation on that norm:
 - equal spread of values about and below norm
- most values cluster around norm
- ling values seen further from norm
- extreme values do exist though
- mean (average value) = median (central value) = mode (most common value)
- plotted curve =
 - bell shaped as above
 - tails never reach x axis
- number of samples:
 - ▶ n>100 usually = near normal
 - ▶ smaller numbers ≈ ↓likely normal distribution
- width of curve = measure of variability

> SD is a measure of this

Is it Normal

- plot values & eyeball
- calculate SD:
 - normal distribution must
 - = 68.3% of results within 1 SD of mean
 - = 95% of results in 1.96 SD of mean

Indices of Central Tendency

- Arithmetic mean = sum of observations divided by number of observations
 - Used for ratio or interval data
- Median = middle value of a series of observations
 - Ordinal data
- Mode = Value which occurs most frequently
 - ordinal data
- Geometric Mean = used if data transformed to logs of significance testing

Measures of Variability

- describe average dispersion of data around a mean
- terms:
 - range:
 - = smallest & largest value in a sample
 - heavily influenced by outliers
 - commonly used in reporting non-parametric data
 - percentiles:
 - what percentage of scores is less than your one
 - eg 65th percentile = 65% less than you
 - 50th percentile = median
 - interguartile range = middle 50% of observations
 - standard deviation:
 - = measure of average spread of individual values around sample or population mean
 - to calculate:
 - square differences between each value & sample mean
 - sum the squares
 - divide this by n-1 ⇒ gives variance
 - then square root variance
 - degrees of freedom:
 - (n-1) = degrees of freedom
 - is number of independent observations which are possible in a sample
 - it is one less than sample number as the last one can be deduced

Standard Deviation

- Benefits of standard deviation:
 - SD with mean gives indication as to whether mean represents a real trend in sample
 - if large randomly selected sample then SD likely close to mean
 - > SD can be used to calculate standard error of the mean (SE)
 - data points within normal distribution can be described as however many SDs from mean
 - tables then tell you proportion of values more extreme than that
 - z transformation

Standard Error of the Mean

- = estimate of spread of sample means around a population mean
- is estimated from data in single sample
- useful:
 - used in parametric tests to quantify difference between a sample mean & it's

$$SD = \sqrt{\left(\frac{\sum (x_i - \overline{x})^2}{n-1}\right)}$$

proposed population mean

used to calculate confidence intervals

Parametric Tests

- based on parameters of the normal distribution
- determine likelihood of a difference occurring by chance variation rather than real effect
- assumptions:
 - data is continuous & numerical
 - → can treat large numbers of discrete data as parametric
 - samples have same variance
 - ▶ taken randomly from normally distributed population
- null hypothesis:
 - > = any apparent difference or effect is a random variation of no difference or effect
- hypothesis test is carried out to determine likelihood of this statement being true or false
 p value:

 - .. probability that difference has occurred by random variation alone
 - p value gives likelihood of null hypothesis being correct
- alpha value:
 - significance level set at study design stage
 - > = limit at which p value too large for difference to be regarded as statistically significant
 - \rightarrow in med research = 0.05
- comparing p to alpha:
 - \rightarrow p 0.045 = 4.5% chance difference found occurred by chance alone
 - problems:
 - 0.05 alpha fairly arbitrary
 - statistical significance does not = clinically significant difference
 - 1 dalpha value = 1 chance of false positive error (aka alpha or type 1 error)
- type 1 error (alpha error):
 - frequency where we in error conclude there is a difference when there isnt one ie false positive frequency
- type 2 error (beta error):
 - frequency where are unable to detect a difference when there is one ie false negative frequency
- one tailed vs two tailed hypothesis:
 - research aim phrased:
 - A is different from B
 - is A larger than B
 - ▶ better to have totally open mind about potential direction = 2 tailed hypothesis
 - if absolutely know beforehand which direction variance will occur can use 1 tailed hypothesis
 is easier to achieve statistical significance with 1 tail

Student's T test

- parametric test for means of samples which are from a normally distributed population but which are 2 small for z test
- diff types:
 - ▶ 1 sample t test = likelihood of a sample mean being different from a specified number
 - ▶ 2 sample or unpaired t test = likelihood of means of 2 independent samples being different
 - paired t test = likelihood of 2 sample means being different where the samples are the same individuals before & after an intervention

Confidence Intervals

- = range around sample mean within which you predict the mean of the sample population lies

→ ie range within which you predict true value lies

- 95% of sample means lie between 1.96 SEM above & below population mean
- gives an indication of precision of sample mean as an estimate of population mean
- → wider interval means greater imprecision ∴ greater potential difference between calculated sample mean & 'true' mean
- causes of wide CI's:
 - small samples
 - large variance in sample
- p compared to CIs:
 - p value = probability of specific hypothesis being right or wrong (binary)
 - ► CI =
 - 1 ed scope for reader judgement on significance (graded)
 - overlapping CI's cannot be regarded as different
- odds ratios:
 - frequently presented with CIs
 - ▶ OR = $1 \approx$ no risk associated with exposure
 - if OR with CI including 1 than OR cannot be significant
- pooled OR of meta-analysis:
 - presented as a diamond at bottom of forest plot
 - width of diamond = CI
 - ▶ if diamond crosses vertical line (OR =1) then pooled OR is not significant

Analysis of Variance (ANOVA)

- determines whether difference among three of more samples by comparing
 - variability between groups (should be large)
 - variability within groups (should be small)
- type:
 - one way ANOVA = compare 1 observation in 3 or more groups
 - Multiple anova = compare >1 observation in ≥3 groups
 - repeated measures ANOVA = comparing 1 variable in same group at different times

Non-Parametric Tests

- appropriate when:
 - distribution of data is severely non-normal
 - ordinal or discrete quantative data
 - small samples
- characteristics of non=parametric tests:
 - based on ranking
 - results are reported with median & range rather than mean & SD
 - less powerful than parametric tests type II error more common (false negatives)
- assumptions:
 - samples randomly selected
 - observations independant

Wilcoxon Rank Sum Test

- = non-parametric equivalent to unpaired T test
- principle:
 - ▶ 2 samples combined, ordered & ranked from low to high
 - samples seperated & ranks summed
 - ▶ look to see if difference between sums of 2 groups

Mann-Whitney U Test

- = non-parametric equivalent to unpaired T test

- principle:
 - rank all smples from smallest to largest & sum rankings in each sample
 - U statistic calculated to assess likelihood of a difference between rank sums
 - U statistic is located in U probability tables

Linear Regression & Correlation

- used to compare relationship between 2 variables where relationship is continuous eg bp & haemorrhage
- linear regression = drawing of a line which best describes association between variables
- correlation = closeness of association between the 2 variables
- assumption:
 - relationship is linear
 - observations are independant
 - observations normally distributed

Pearson Correlation Coefficient

- correlation sis assessment of how likely proposed relationship is
- based on quantifying residual scatter around the regression line
- r value:
 - ▶ 1 or -1 = perfect correlation
 - ▶ 0.7-1 = strong correlation
 - ▶ 0 = no correlation

Risk

Chi square vs Risk Analysis

- Chi square assesses likelihood to be real numerical difference in frequency if an event between groups
- Risk analysis:
 - > = gives indication of the strength of association between groups
 - several ways to score risk:
 - relative risk
 - odds ratio
 - number needed to treat

Cohort Studies

- = study of patients where some exposed to risk, others not
- followed over time to determine which develop disease
- almost always prospective (but is poss to do retrospective)
- most commonly use relative risk (OR also possible)

	Cancer	No Cancer
Smoking	a	Ъ
Non-smoking	С	d

Relative Risk (Risk Ratio)

- = ratio of incidence of disease among exposed : incidence among non exposed
- aka incidence risk

$$RR = \frac{\text{incidence among exposed}}{\text{incidence among non-exposed}} = \frac{\left(\frac{a}{a+b}\right)}{\frac{c}{c+d}}$$

- key points:
 - ▶ = a true risk ie RR of 3 means x3 the risk
 - RR is reported with CI & if CI includes 1 then not significant

Case Control Study

- = study where cases identified retrospectively as having disease
- then compare those patients with controls without disease
- useful in very rare conditions
- number of cases & controls which had exposure to variable of interest is compared
- analysis with Odds Ratio

	DVT	Controls
OC pill	a	b
No OC pill	С	d

Confounding Variables

- = form of bias seen when demographics of groups studied are different & demographics influence outcome
- eg ages or co-morbidies not matched between groups
- in order to prevent:
 - design stage:
 - large sample
 - randomisation
 - stratum matching several studies with diff age groups
 - matched design
 - analysis stage:
 - subdivide into diff age groups & analyse separately
 - logistic regression
 - multivariate analysis

Odds Ratio

- odds of disease = number of cases who have disease divided by number who dont have it
- odds ratio = odds of disease in exposed divided by odds of the disease in non exposed

$$OR = \frac{\text{odds of disease in exposed}}{\text{odds of disease in non - exposed}} = \frac{\binom{a}{b}}{\binom{b}{d}}$$

- key points:
 - OR does not give an exact value of risk
 - actually tend to overestimate risk except where outcome is rare
 - reported with a CI
 - only test appropriate for retrospective case-control studies

Mnemonic to remember OR:RR Cohort:Case Control

Backward coHort

OR Ahead (ie prospective)

coNtrol RR Exposure Disease

Number Needed to Treat

- = number of patients who need to be treated in order to avoid one adverse event
- NNT is the reciprocal of the absolute risk reduction
- NNT advantages over RR:
 - gives relevance in terms of magnitude of clinical effect impt in rare problems:
 - incidence of adverse event is rare = 0.06%:

- 33% reduction in risk (RR = 0.33) ⇒ absolute risk reduction of only 0.02%
- : NNT to prevent one adverse event would be 5000
- incidence of adverse event is common = 6%:
 - RR 0.33 ⇒ absolute risk reduction of 2%
 - .: NNT of only 50
- calculation of NNT: **NNT = 1/ARR**
- **ARR** = (drugs ↓s risk of bad outcome from 50% to 30%)
 - control event rate experimental event rate
 - -0.5 0.3 = 0.2
 - -0.2 = 20%
- NNT
 - → ∴ absolute risk reduction = 0.2
 - \rightarrow NNT = 1/0.2 = 5

Predictive Ability of Tests

- diagnostic test:
 - any kind of test performed to aid in the diagnosis or detection of disease

Sensitivity

- = true positives / true positives & false negatives
- ▶ = ability of test to detect disease
- = true positives correctly identified by test
- → ∴ high sensitivity = ideal

Specificity

- ▶ = true negatives / true negatives & false positives
- ▶ = true negatives correctly identified by test
- ▶ ∴ high specificity = test with few false positives
- → esp impt in screening tests
- → can be estimated from case-control studies ie dont need to be able to estimate prevalence pre-test
- ie more useful in disease which are less prevalent

PPV

- ▶ = true positives / true positives & false positives
- proportion within population who test positive that actually have disease

NPV

- ▶ = true negatives / true negatives and false negatives
- ▶ = those who test negative that don't have disease 'true negative'
- → Predictive values depend on prevalence of disease and may vary from population to population:
- need to know estimates of prevalence from cross sectional studies
- ie much better high when prevalence of disease is more common
- if disease is very uncommon, would need to have a very very high NPV to say someone doesnt have a disease
- Likelihood ratio for positive test result (LR+) = sensitivity /1 specificity
- Likelihood ratio for negative test result (LR-) = 1-sensitivity/specificity
- Posterior odds = prior odds multiplies by likelihood ratio

		Condition (as determined by "Gold standard")		
		Condition Positive	Condition Negative	
Test	Test Outcome Positive	True Positive	False Positive (Type I error)	Positive predictive value = Σ True Positive Σ Test Outcome Positive
Outcome	Test Outcome Negative	False Negative (Type II error)	True Negative	Negative predictive value = Σ True Negative Σ Test Outcome Negative
		$\frac{\text{Sensitivity}}{\Sigma \text{ True Positive}} = \frac{\Sigma \text{ True Positive}}{\Sigma \text{ Condition Positive}}$	$\frac{\text{Specificity}}{\Sigma \text{ True Negative}} = \frac{\Sigma \text{ True Negative}}{\Sigma \text{ Condition Negative}}$	

Power & Calculation of Sample Size

- unethical & waste of time & money to embark on study to see if drug is effective if there is a significant chance of false negative result
- most commonest cause of this is too small sample size
- power of study
 - > = chance of it successfully demonstrating the true result
 - ▶ 1- the false negative rate

Requirements to Calculate

- desired effect size ie effect hoping to demonstrate (plus also what might be regarded as no effect ie null hypothesis value)
- power size
 - ie how certain you want to be in picking up true effect
 - conventionally we use a power of 80-90%
 - ullet high power sizes \Longrightarrow larger sample size required
- alpha value:
 - by tradition 0.05
 - ▶ lower values ⇒ ↑sample size
- prediction of variance within samples:
 - commonly taken from pilot studies or literature studies
 - ▶ larger variance ⇒ larger required sample
- final calculations used depends on type of trial
- complex equations

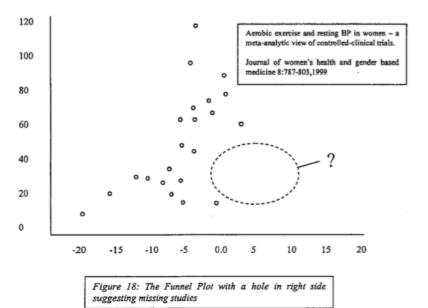
Meta Analysis

- = mathematical process of combining numeric data from studies using similar treatments
- done in a systematic manner
- systematic review = the process of collecting studies, meta-analysis, commenting & conclusions

Aims & Advantages

- pooled estimate of effect
- allows for objective appraisal of evidence
- may ↓probability of false negative results
- heterogeneity between study results may be explained

Problems


- heterogeneity of study demographics, methods, results & quality
- selection bias of studies & data
- use of summary data rather than individual data ⇒ magnification of assumptions/errors
- lack of inclusion & exclusion criteria detail
- publication bias ⇒ many negative studies not published

Practicalities

- different studies are weighted:
 - should be done in transparent manner
 - largest trials most heavily weighed
- OR used & combined using random effects model
- Forrest plot used to graphically display
 - OR & confidence intervals
 - pooled OR
- positive MA should always be confirmed with a large RCT

Funnel Plots

- random variation \Rightarrow spread of study results around the true result
- larger studies will be closer to true result
- .. plot of result against size of all studies in MA should create a symmetrical funnel shape
- if not symmetrical ≈ publication bias
- need number of studies for this to be accurate
- eg of funnel plot ≈ bias......

Evidence Based Medicine

- = application of current best evidence in the management of individual patients
- phases to consider:
 - ▶ 1 = ask solvable question
 - ▶ 2 = research type, quality
 - ▶ 3 = is evidence valid
 - ▶ 4 = evidence applicable to your patient

▶ 5 = self assessment

Quality of Evidence

many diff systems but 1 example....

- Level 1 = systematic review of all relevant RCTs
- level 2 = at least 1 well defined RCT
- level 3 = other well designed trials
- level 4 = descriptive studies, reports of expert committees or opinions of experts

Categories of Recommendation

- based on balance of risk versus benefit to patient:
 - ▶ level A = good evidence suggest benefit substantially outweigh risk
 - ▶ level B = fair evidence suggest benefit outweigh risks
 - ▶ level C = fair evidence that benefits (eg to treatment). but balance of benefit & risk is too close to make general recommendation.
 - ▶ level D = fair evidence that risks outweight benefit.
- → level A & B Treatment should be offered to pt
 - level C treatment offer = judgement call
 - level D treatment should prob not be offered unless extenuating circumstances

Errors in Research

Random Error

- = error from lack of precision in conducting study
- Led by meticulous technique & by studying large numbers

Bias

- = introduction of systematic error
- not ↓ed by ↑ing sample size

Examples

Problem	Explanation	Prevention
Selection bias	- 1 gp has different risk than the other	- randomisation - Cross over
Detection bias	- observations in 1 gp not sought as diligently as in other	- Blinding
Recall bias	- Pts allocation group influences way they report symptoms eg placebo vs treatment	- patient blinding
Response bias	- Pts enrolling in a trial may not represent population as a whole	- random selection
Publication bias	- Negative studies less likely to be published	 all studies should be submitted regardless of result MA's should demonstrate funnel plot analysis
Regression to mean	 Random effects ⇒ rare, extreme variation on a measurement if measurement repeated then measurement likely less extreme ∴if treatment given after 1st measurement then repeated 2nd measurement may falsely suggest a treatment effect 	- Control group

Problem	Explanation	Prevention
Hawthorne Effect	- Actual process of studying & following pts influences outcome	- Control group - mask intention of study from pt
Confounding	- when demographics of groups are different	- Match groups - analysis in stratifications
Sample size too small	- 1 risk type 2 error	- adequate sample size

Analysis Errors

- parametric test used rather than non-parametric:
 - common if:
 - popn is not normally distrubuted
 - sample size is too small to be sure if it is of normal distrubution
 - ordinal data treated as interval data
- opposite (non-parametric used instead of parametric):
 - non parametric tests are less powerful
 - → ↑ed risk of type II error (false negative)
- paired data treated as unpaired ⇒ ↑ed chance type 2 error
- one tailed test instead of 2 tailed ⇒ ↑ed chance of type 1 error

Presentation/Publication Error

- failure to report data points or SD or SE
- reporting mean with SE:
 - ▶ should report with SD
 - ▶ SE is always a smaller number ∴ false impression of trend in sample
- assumption that a p value less than alpha value = clinical significance
 - nope it only suggests statistical significance
- failure to publish study design & statistical analysis
- publication bias

How to Plan a Study

- define aim
- research topic
- write protocol:
 - ▶ aim
 - background
 - study design:
 - prospective vs retro
 - cohort vs case control
 - sequential trial design
 - Reducing bias:
 - blinidng
 - crossover
 - randomisation
 - controls
 - inclusion/exclusion criteria
 - power analysis calculate sample size
 - treatments: dose, side effects, placebo
 - outcome measures

- statistical methods & null hypothesis
- safety monitoring
- patient info & consent forms
- ethics approval
- pilot study
- modify protocol based on basis pilot
- re-ethics approval
- execute

Clinical Drug trials

- pre-clinical = non human subjects to understand efficacy, toxicology, pharmacokinetics
- phase 1 =
 - dose ranging
 - subtherapeutic dosing
 - ▶ humans (20-100) pharmacokinetics & toxicology of drug
- phase 2 =
 - assess efficacy & safety
 - therapeutic dosing
 - humans (100-300)
 - not looking for therapeutic effect
- phase 3 =
 - assessing effectiveness
 - humans 1000-2000
 - testing for therapeutic range, assumed to be effective
- phase 4 =
 - post marketing surveillance
 - watch long term effects

High Yield Definitions

Normal Distribution

- random independant factors have caused a spread of observations around a norm
- most values are around norm
- extreme variations are rare
- random effects work above & below norm : mean = mode = median
- bell shaped plot
- large sample randomly from normal population also has normal distribution
- big sample sizes = mean & SD likely to be close to population mean
- small sample sizes ⇒ ↑chance mean & SD further from population mean
- if multiple samples taken from same populatio then plot of means will be norm distributed

Standard Deviation

- = spread of individual values around population mean
- Use:
 - gives indication of reliability of mean as a summary of trend in sample
 - ▶ SD of large sample is similar to that of its population
 - Used to calculate SEM
 - used for z transformation of individual observations

Standard Error of Mean

- measure of spread of sample means around the population mean

Standard Error

- used in z transformation of sample means in parametric testing
- used to calculate confidence intervals

Parametric Testing

- tests based on normal distribution
- informs whether difference due to chance or real

Z value

- expresison of an individual observation or sample mean in multitudes of SD or SEMs from population mean

Null Hypothesis

- a hypothesis to be tested which states no real difference between two values ie any difference has occurred by chance

Alpha

- = significance level chosen at study design stage
- = limit at which p becomes statistically significant

P value

- = probability of there being no difference when you say there is
- = probability that difference has occurred by random variation alone
- = gives likelihood of null hypothesis being correct
- calculated from trial results

Alpha (type 1 error)

- chance of there being no difference when you say there is one
- false positive rate

Beta (type II error)

- chance of being a difference when you say there **isnt** one
- false negative rate

Confidence interval

- range above and below the sample mean within which you predict the sample population mean lies

T Test

- parametric test of means where samples are too small to use the normal test

One tailed

- When there is only one direction that one group can vary from another
- .. only have to look for one tail
- = easier to get significant result : if used incorrectly 1ed chance type I error

Two Tailed

- dont know for certain which way test result will vary
- ∴ look for two tails
- = harder to get significant result ∴ used incorrectly ↑chance of type II error

ANOVA

- method used to compare 3 or more parametric samples
- between group variance must outweigh within gp variance

Non-Parametric Testing

- any test which isnt parametric
- uses ranking & data which isnt continuous

Regression

- drawing line which best describes relationship between 2 continuous variables

Correlation

- how close relationship is between variables

Power of Study

- = probability of a study being able to demonstrate a difference when a difference exists
- 1 false negative rate

Calculating sample sizes

- comparing numbers in 2 samples:
 - alpha
 - ▶ 1-power
 - desired effect size
 - predicted standard deviation of samples
- comparing proportions:
 - alpha
 - ▶ 1-power
 - proportion looking for
 - null hypothesis proportion

Chi Square

- compares frequency of binary event within 2 or more groups
- uses a contingency table
- compares observed with expected values

Relative Risk

- incidence of an event with exposure compared to without exposure

Odds Ratio

- odds of getting an event with exposure compared to without exposure

NNT

- number of patients needed to be treated to avoid an adverse event
- 1/ARR

Sensitivity

- proportion of disease correctly identified
- true positive rate identified by test

Specificity

- Proportion of no-disease correctly identified
- ie true negative rate identified by test

PPV

- proportion of a tests positive results which are true positives
- must have prevalence rates

NPV

- proportion of tests negative results which are true negatives

Meta Analysis

- mathematical process of combining data from studies using similar treatments in a systematic manner